Polyamines preferentially interact with bent adenine tracts in double-stranded DNA

نویسندگان

  • Søren Lindemose
  • Peter E. Nielsen
  • Niels Erik Møllegaard
چکیده

Polyamines, such as putrescine, spermidine and spermine, have indirectly been linked with the regulation of gene expression, and their concentrations are typically increased in cancer cells. Although effects on transcription factor binding to cognate DNA targets have been demonstrated, the mechanisms of the biological action of polyamines is poorly understood. Employing uranyl photo-probing we now demonstrate that polyamines at submillimolar concentrations bind preferentially to bent adenine tracts in double-stranded DNA. These results provide the first clear evidence for the sequence-specific binding of polyamines to DNA, and thereby suggest a mechanism by which the cellular effects of polyamines in terms of differential gene transcriptional activity could, at least partly, be a direct consequence of sequence-specific interactions of polyamines with promoters at the DNA sequence level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Helium-Neon Laser and Sodium Hypochlorite on Calf Thymus Double-Stranded Deoxyribonucleic Acid Molecule: An in Vitro Experimental Study

Introduction: Low-energy helium-neon (He-Ne) laser beam lightis used in combination with sodium hypochlorite (Na2HOCl3) for clinical purposes. Regarding this, the present study aimed to investigate the effect of He-Ne laser (632.8 nm) and sodium hypochlorite on the calf thymus double-stranded deoxyribonucleic acid (ctdsDNA) molecule.  Materials and Methods: For the purpose of the study, ctdsDNA...

متن کامل

The Physical Origin of Intrinsic Bends in Double Helical DNA

The macroscopic curvature induced in the double helical B-DNA by regularly repeated adenine tracts (A-tracts) is a long known, but still unexplained phenomenon. This effect plays a key role in DNA studies because it is unique in the amount and the variety of the available experimental information and, therefore, is likely to serve as a gate to the unknown general mechanisms of recognition and r...

متن کامل

HMf, a histone-related protein from the hyperthermophilic archaeon Methanothermus fervidus, binds preferentially to DNA containing phased tracts of adenines.

HMf, a histone-related protein from Methanothermus fervidus, was found to bind preferentially to a DNA that is intrinsically bent as a result of the presence of phased oligo(dA) tracts. The intergenic regions in M. fervidus DNA are A+T rich and frequently contain oligo(dA) tracts, some of which may have the size and phasing required to create a net bending in one direction. The binding of HMf t...

متن کامل

Poly(ADP-ribose) polymerases covalently modify strand break termini in DNA fragments in vitro

Poly(ADP-ribose) polymerases (PARPs/ARTDs) use nicotinamide adenine dinucleotide (NAD+) to catalyse the synthesis of a long branched poly(ADP-ribose) polymer (PAR) attached to the acceptor amino acid residues of nuclear proteins. PARPs act on single- and double-stranded DNA breaks by recruiting DNA repair factors. Here, in in vitro biochemical experiments, we found that the mammalian PARP1 and ...

متن کامل

Loop L1 governs the DNA-binding specificity and order for RecA-catalyzed reactions in homologous recombination and DNA repair

In all organisms, RecA-family recombinases catalyze homologous joint formation in homologous genetic recombination, which is essential for genome stability and diversification. In homologous joint formation, ATP-bound RecA/Rad51-recombinases first bind single-stranded DNA at its primary site and then interact with double-stranded DNA at another site. The underlying reason and the regulatory mec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2005